Magnesium & Mental Health

Learn how the major functions of your brain & nerves need magnesium[1], and why magnesium deficiency is linked to mental & neurodegenerative diseases.

  1. Magnesium fuels our brain and nerves.
  2. Magnesium develops our brain and nerves.
  3. Magnesium develops our skills, intelligence and memory.
  4. Magnesium protects our nerves and brain cells.
  5. Magnesium helps create new brain cells.
  6. Magnesium facilitates nerve signalling.
  7. Magnesium deficiency can contribute to mental and nervous system diseases (depression, Alzheimer’s, Parkinsons, Multiple Sclerosis, ADHD, etc.).
  8. Solutions to restore magnesium & promote mental health.
Learn More

Magnesium & Mental Health

Learn how the major functions of your brain & nerves need magnesium[1], and why magnesium deficiency is linked to mental & neurodegenerative diseases.

  1. Magnesium fuels our brain and nerves.
  2. Magnesium develops our brain and nerves.
  3. Magnesium develops our skills, intelligence and memory.
  4. Magnesium protects our nerves and brain cells.
  5. Magnesium helps create new brain cells.
  6. Magnesium facilitates nerve signalling.
  7. Magnesium deficiency can contribute to mental and nervous system diseases (depression, Alzheimer’s, Parkinsons, Multiple Sclerosis, ADHD, etc.).
  8. Solutions to restore magnesium & promote mental health.
Let's Dive In!

1. Magnesium fuels our brain and nerves:

2. Magnesium develops our brain and nerves:

3. Magnesium develops our skills, intelligence and memory:

4. Magnesium protects our nerves and brain cells:

5. Magnesium helps create new brain cells:

6. Magnesium facilitates nerve signalling:

7. Magnesium deficiency can contribute to mental and nervous system diseases (depression, Alzheimer’s, Parkinsons, Multiple Sclerosis, ADHD, etc.):

8. Solutions to restore magnesium & promote mental health:

While restoring and maintaining healthy magnesium levels may not resolve all mental and neurodegenerative health conditions on its own, based on magnesium’s essential roles in brain and nerve function, it is still a major requirement for optimal mental health.  A complete magnesium restoration protocol can include:

  • Eating a magnesium-smart diet. Learn more.
  • Reducing the environmental, psychological and physical stressors that deplete magnesium from your body. Learn more.
  • Using a quality trans-dermal magnesium supplement to restore whole-body magnesium levels. Consider combining this with an oral magnesium-taurate or a magnesium l-threonate supplement which are both helpful for mental health. Learn more.

++ Scientific References

  1. Magnesium in the Central Nervous System https://www.adelaide.edu.au/press/titles/magnesium/magnesium-ebook.pdf
  2. Carbohydrate burning: 10 Steps of glycolysis  http://biology.about.com/od/cellularprocesses/a/aa082704a.htm
  3. Carbohydrate Burning: Citric acid cycle https://en.wikipedia.org/wiki/Citric_acid_cycle
  4. ATP production: Oxidative phosphorylation https://en.wikipedia.org/wiki/Oxidative_phosphorylation
  5. The linkage between magnesium binding and RNA folding.  http://www.ncbi.nlm.nih.gov/pubmed/11955006
  6. Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding.  http://www.ncbi.nlm.nih.gov/pubmed/21173199
  7. A thermodynamic framework for the magnesium-dependent folding of RNA.  http://www.ncbi.nlm.nih.gov/pubmed/12717727
  8. RNA-magnesium-protein interactions in large ribosomal subunit.  http://www.ncbi.nlm.nih.gov/pubmed/22712611
  9. A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center.  http://www.ncbi.nlm.nih.gov/pubmed/1927918
  10. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial.(While magnesium’s role in the beta cell’s actual release of insulin is less established than its role in the beta cells creating insulin, this study makes ground on the overall impact of magnesium on beta cells).  http://www.ncbi.nlm.nih.gov/pubmed/21241290
  11. Intracellular magnesium and insulin resistance. http://www.ncbi.nlm.nih.gov/pubmed/15319146
  12. Magnesium in Human Health and Disease. http://www.springer.com/gp/book/9781627030434  or  see this excerpt:    https://books.google.ca/books?id=iUCx1dwWr7kC&pg=PA132&lpg=PA132&dq=tyrosine+kinase+Mg&source=bl&ots=y2ITN0DdKo&sig=d9F3WRCchZ2_2wQhvW9fe2faqtk&hl=en&sa=X&ved=0ahUKEwj7jJ3fxdTMAhVM1oMKHQDFAKkQ6AEIYzAJ#v=onepage&q=tyrosine%20kinase%20Mg&f=false
  13. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. http://www.ncbi.nlm.nih.gov/pubmed/15223977
  14. The insulin receptor: structure, function, and signaling. http://www.cogsci.ucsd.edu/~mboyle/COGS163/pdf-files/W2-AR-The%20insulin%20receptor%20structure,%20function%20and%20signaling.pdf
  15. Insulin Signaling and the Regulation of Glucose Transport. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431367/
  16. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. http://www.hindawi.com/journals/isrn/2012/856987/
  17. Molecular Basis of Insulin-stimulated GLUT4 Vesicle Trafficking. http://www.jbc.org/content/274/5/2593.full
  18. Sustained activation of insulin receptors internalized in GLUT4 vesicles of insulin-stimulated skeletal muscle. http://www.ncbi.nlm.nih.gov/pubmed/11078443
  19. Biochemistry of magnesium http://www.uwm.edu.pl/jold/poj1532010/jurnal-16.pdf
  20. Magnesium regulation of the glycolytic pathway and the enzymes involved. http://www.ncbi.nlm.nih.gov/pubmed/2931560
  21. Thiamine and magnesium deficiencies: keys to disease. http://www.ncbi.nlm.nih.gov/pubmed/25542071
  22. THE EFFECT OF MAGNESIUM DEFICIENCY ON OXIDATIVE PHOSPHORYLATION  http://www.jbc.org/content/228/2/573.full.pdf
  23. Section: “ELEMENTS OF MAGNESIUM BIOLOGY” Subsection: 1.13 Synthesis and activity of enzymes http://www.mgwater.com/durex01.shtml
  24. Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. http://www.ncbi.nlm.nih.gov/pubmed/3056314
  25. Critical role of magnesium ions in DNA polymerase beta’s closing and active site assembly.  http://www.ncbi.nlm.nih.gov/pubmed/15238001
  26. Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. http://www.ncbi.nlm.nih.gov/pubmed/12037179
  27. NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD) http://cshperspectives.cshlp.org/content/4/6/a005710.full
  28. Activation Mechanisms of the NMDA Receptor http://www.ncbi.nlm.nih.gov/books/NBK5274/
  29. Influence of external magnesium ions on the NMDA receptor channel block by different types of organic cations. http://www.ncbi.nlm.nih.gov/pubmed/22261381
  30. The mechanism of magnesium block of NMDA receptors  http://www.sciencedirect.com/science/article/pii/S1044576584710128
  31. NMDA Receptor Function and Physiological Modulation http://brain.phgy.queensu.ca/pare/assets/Neurobiology2.pdf
  32. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones.  http://www.ncbi.nlm.nih.gov/pubmed/2451020
  33. The NMDA receptor complex as a therapeutic target in epilepsy: a review. http://www.ncbi.nlm.nih.gov/pubmed/22056342
  34. A novel role for protein synthesis in long-term neuronal plasticity: maintaining reduced postburst afterhyperpolarization.  http://www.ncbi.nlm.nih.gov/pubmed/20335469
  35. Memory consolidation during sleep: interactive effects of sleep stages and HPA regulation. https://www.ncbi.nlm.nih.gov/pubmed/17853075
  36. Consider Magnesium Homeostasis: III: Cytochrome P450 Enzymes and Drug Toxicity.  http://online.liebertpub.com/doi/abs/10.1089/pai.1994.8.7
  37. Biochemistry. 5th edition. Section 26.4Important Derivatives of Cholesterol Include Bile Salts and Steroid Hormones. http://www.ncbi.nlm.nih.gov/books/NBK22339/
  38. Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17 alpha-hydroxylase/C17-20 lyase in Leydig cells.  http://www.ncbi.nlm.nih.gov/pubmed/2160293
  39. DHEA administration increases rapid eye movement sleep and EEG power in the sigma frequency range. https://www.ncbi.nlm.nih.gov/pubmed/7840167
  40. Impaired declarative memory consolidation during sleep in patients with primary insomnia: Influence of sleep architecture and nocturnal cortisol release. https://www.ncbi.nlm.nih.gov/pubmed/16876140/
  41. The Role of Slow Wave Sleep in Memory Processing. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824214/
  42. Slow-wave sleep and the consolidation of long-term memory. https://www.ncbi.nlm.nih.gov/pubmed/20509828
  43. Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. https://www.ncbi.nlm.nih.gov/pubmed/17522024?dopt=Abstract&holding=npg
  44. The whats and whens of sleep-dependent memory consolidation. https://www.ncbi.nlm.nih.gov/pubmed/19251443
  45. Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. https://www.ncbi.nlm.nih.gov/pubmed/12163983
  46. Iron, Free Radicals, and Oxidative Injury. http://jn.nutrition.org/content/134/11/3171S.full.pdf+html
  47. Ferrotoxic Disease: The Next Great Public Health Challenge. http://clinchem.aaccjnls.org/content/clinchem/60/11/1362.full.pdf
  48. Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP. https://www.ncbi.nlm.nih.gov/pubmed/8567646
  49. The Role of Ceruloplasmin in Iron Metabolism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC322742/pdf/jcinvest00228-0276.pdf
  50. Multi-Copper Oxidases and Human Iron Metabolism. http://www.mdpi.com/2072-6643/5/7/2289/htm
  51. Glutathione Biosynthesis.  https://en.wikipedia.org/wiki/Glutathione
  52. Glutathione Synthesis in Human Erythrocytes http://www.ncbi.nlm.nih.gov/pmc/articles/PMC442063/
  53. Role of magnesium in glutathione metabolism of rat erythrocytes. http://www.ncbi.nlm.nih.gov/pubmed/7062145
  54. Effects of Glutathione on Red Blood Cell Intracellular Magnesium http://hyper.ahajournals.org/content/34/1/76.full
  55. The effect of magnesium on oxidative neuronal injury in vitro. http://www.ncbi.nlm.nih.gov/pubmed/9422349
  56. Magnesium deprivation decreases cellular reduced glutathione and causes oxidative neuronal death in murine cortical cultures. http://www.ncbi.nlm.nih.gov/pubmed/11164781
  57. Magnesium Intake in Relation to Systemic Inflammation, Insulin Resistance, and the Incidence of Diabetes  http://care.diabetesjournals.org/content/33/12/2604.abstractijkey=f923c1120dc6636d93fa39d29c797bee45949288&keytype2=tf_ipsecsha
  58. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review: http://www.ncbi.nlm.nih.gov/pubmed/24518747
  59. Magnesium in Man: Implication for Health and Disease http://physrev.physiology.org/content/95/1/1.full
  60. Magnesium in Health and Disease: http://link.springer.com/chapter/10.1007%2F978-94-007-7500-8_3
  61. Magnesium Deficiency: A Cause of Heterogenous Disease in Humans: http://www.magtabsr.com/content/dr-resources-pdfs/Magnesium-Deficiency-A-Cause-of-Heterogenous-Disease-in-Humans.pdf
  62. Magnesium in Prevention and Therapy  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586582/#B5-nutrients-07-05388
  63. Hypomagnesemia is Associated with Increased Mortality among Peritoneal Dialysis Patients.  http://www.ncbi.nlm.nih.gov/pubmed/27023783
  64. Magnesium supplement promotes sciatic nerve regeneration and down-regulates inflammatory response. http://www.ncbi.nlm.nih.gov/pubmed/21609904
  65. Does your brain produce new cells? https://www.theguardian.com/science/neurophilosophy/2012/feb/23/brain-new-cells-adult-neurogenesis
  66. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. https://www.ncbi.nlm.nih.gov/pubmed/11406822
  67. Short-term and long-term survival of new neurons in the rat dentate gyrus. https://www.ncbi.nlm.nih.gov/pubmed/12717714
  68. Murine Features of Neurogenesis in the Human Hippocampus across the Lifespan from 0 to 100 Years  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008809
  69. NMDA receptor function, memory, and brain aging http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181613/
  70. High cholesterol level is essential for myelin membrane growth http://www.nature.com/neuro/journal/v8/n4/full/nn1426.html
  71. Multiple Sclerosis: A Coordinated Immunological Attack against Myelin in the Central Nervous System http://www.cell.com/cell/abstract/S0092-8674(00)81107-1?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867400811071%3Fshowall%3Dtrue
  72. Mevalonate pathway https://en.wikipedia.org/wiki/Mevalonate_pathway
  73. Comparison of Mechanism and Functional Effects of Magnesium and Statin Pharmaceuticals http://www.mgwater.com/statin.shtml
  74. The NMDA receptor in epilepsy http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780192625021.001.0001/acprof-9780192625021-chapter-17
  75. Melatonin Metabolism in the Central Nervous System http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001211/
  76. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. http://www.ncbi.nlm.nih.gov/pubmed/15975667
  77. Melatonin and its relation to the immune system and inflammation. http://www.ncbi.nlm.nih.gov/pubmed/11268363
  78. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats. http://www.ncbi.nlm.nih.gov/pubmed/20676767
  79. Oxidative damage in the central nervous system: protection by melatonin http://www.sciencedirect.com/science/article/pii/S0301008298000525
  80. Melatonin and mitochondrial dysfunction in the central nervous system http://www.sciencedirect.com/science/article/pii/S0018506X12000517
  81. Antiinflammatory Activity of Melatonin in Central Nervous System http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001216/
  82. The Magnesium Factor – melatonin biosynthesis – oxidative stress, pg 172. https://books.google.ca/books?id=BuW6xwqlQfkC&pg=PA172&lpg=PA172&dq=melatonin+biosynthesis+magnesium&source=bl&ots=vaxoOEyveq&sig=hwjGTCJch53S_NIo6Te8zvJHRww&hl=en&sa=X&ved=0ahUKEwiXwJGExKvOAhVE9x4KHToeAe0Q6AEIQjAF#v=onepage&q=melatonin%20biosynthesis%20magnesium&f=false
  83. Role of cellular magnesium in health and human disease. http://www.ncbi.nlm.nih.gov/pubmed/14766364
  84. Dietary factors and fluctuating levels of melatonin. http://www.foodandnutritionresearch.net/index.php/fnr/article/view/17252/23292
  85. Dietary magnesium deficiency decreases plasma melatonin in rats. http://www.ncbi.nlm.nih.gov/pubmed/17172005
  86. The Effect of Melatonin, Magnesium, and Zinc on Primary Insomnia in Long-term Care Facility Residents in Italy: A Double-blind, Placebo-controlled Clinical Trial http://www.medscape.com/viewarticle/736096
  87. Alzheimer’s Disease and the β-Amyloid Peptide http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813509/
  88. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. http://www.ncbi.nlm.nih.gov/pubmed/24052108
  89. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. http://www.ncbi.nlm.nih.gov/pubmed/10487842
  90. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. http://www.ncbi.nlm.nih.gov/pubmed/24052108
  91. Scientists reveal how beta-amyloid may cause Alzheimer’s https://med.stanford.edu/news/all-news/2013/09/scientists-reveal-how-beta-amyloid-may-cause-alzheimers.html
  92. Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. http://www.ncbi.nlm.nih.gov/pubmed/21354274
  93. Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus http://onlinelibrary.wiley.com/doi/10.1111/jpi.12238/abstract
  94. Melatonin reduces hippocampal beta-amyloid generation in rats exposed to chronic intermittent hypoxia. http://www.ncbi.nlm.nih.gov/pubmed/20654588
  95. Beta-amyloidolysis and glutathione in Alzheimer’s disease http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640603/
  96. γ-glutamylcysteine (GGC)-mediated upregulation of glutathione levels can ameliorate toxicity of natural beta-amyloid oligomers in primary adult human neurons http://www.alzheimersanddementia.com/article/S1552-5260(13)02682-4/abstract
  97. Elevation of glutathione as a therapeutic strategy in Alzheimer disease http://www.sciencedirect.com/science/article/pii/S0925443911002262
  98. Beneficial effects of melatonin in experimental models of Alzheimer disease http://www.nature.com/aps/journal/v27/n2/abs/aps200613a.html
  99. Dementias: the role of magnesium deficiency and an hypothesis concerning the pathogenesis of Alzheimer’s disease. http://www.ncbi.nlm.nih.gov/pubmed/2092675
  100. Magnesium depletion and pathogenesis of Alzheimer’s disease http://www.mgwater.com/dur16.shtml
  101. Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease.  http://www.ncbi.nlm.nih.gov/pubmed/21951617
  102. Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. http://www.ncbi.nlm.nih.gov/pubmed/11008926/
  103. Magnesium Status in Alzheimer’s Disease: A Systematic Review. https://www.ncbi.nlm.nih.gov/pubmed/26351088
  104. Magnesium ions show promise in slowing progression of Alzheimer’s disease in mice  https://www.sciencedaily.com/releases/2015/12/151201115043.htm
  105. Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model.  http://www.ncbi.nlm.nih.gov/pubmed/25268773/
  106. Iron, brain ageing and neurodegenerative disorders. www.nature.com/nrn/journal/v5/n11/full/nrn1537.html
  107. Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. https://www.ncbi.nlm.nih.gov/pubmed/18560134
  108. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. www.nature.com/articles/ncomms7760
  109. Prevalence of amyloid-beta deposition in the cerebral cortex in Parkinson’s disease. http://www.ncbi.nlm.nih.gov/pubmed/12518303
  110. Striatal beta-amyloid deposition in Parkinson disease with dementia. http://www.ncbi.nlm.nih.gov/pubmed/18219254\
  111. The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. http://www.ncbi.nlm.nih.gov/pubmed/11193145
  112. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. http://www.nature.com/nrn/journal/v14/n9/full/nrn3549.html
  113. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism http://www.pnas.org/content/112/38/E5308.full.pdf
  114. Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. http://www.ncbi.nlm.nih.gov/pubmed/11850416
  115. Parkinson’s: Neurons Destroyed By Three Simultaneous Strikes https://www.sciencedaily.com/releases/2009/04/090429132222.htm
  116. Magnesium: Nature’s physiologic calcium blocker. http://www.ahjonline.com/article/0002-8703(84)90572-6/references
  117. Magnesium: An update on physiological, clinical and analytical aspects. http://www.sciencedirect.com/science/article/pii/S0009898199002582
  118. Extracellular magnesium and calcium blockers modulate macrophage activity. http://www.ncbi.nlm.nih.gov/pubmed/27160489
  119. Effects of magnesium on inactivation of the voltage-gated calcium current in cardiac myocytes. http://www.ncbi.nlm.nih.gov/pubmed/2559140
  120. Magnesium Inhibits Norepinephrine Release by Blocking N-Type Calcium Channels at Peripheral Sympathetic Nerve Endings. http://hyper.ahajournals.org/content/44/6/897.full
  121. Magnesium Inhibition of Ryanodine-Receptor Calcium Channels: Evidence for Two Independent Mechanisms. https://www.researchgate.net/publication/14121015_Magnesium_Inhibition_of_Ryanodine-Receptor_Calcium_Channels_Evidence_for_Two_Independent_Mechanisms
  122. Calcium–magnesium interactions in pancreatic acinar cells. http://www.fasebj.org/content/15/3/659.abstract
  123. Magnesium ion augmentation of inhibitory effects of adenosine on dopamine release in the rat striatum. http://www.ncbi.nlm.nih.gov/pubmed/9201762
  124. Elevated brain lesion volumes in older adults who use calcium supplements: a cross-sectional clinical observational study. https://www.ncbi.nlm.nih.gov/pubmed/24787048
  125. Genetics of iron regulation and the possible role of iron in Parkinson’s disease. https://www.ncbi.nlm.nih.gov/pubmed/18675357
  126. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case–control study in Japan. http://onlinelibrary.wiley.com/doi/10.1111/j.1468-1331.2010.03088.x/abstract
  127. Magnesium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons. http://www.sciencedirect.com/science/article/pii/S000689930702971X
  128. The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: The role of mitochondrial complex I and reactive oxygen species revisited. https://www.scopus.com/record/display.uri?eid=2-s2.0-0033934847&origin=inward&txGid=0
  129. Multiple Sclerosis: A Coordinated Immunological Attack against Myelin in the Central Nervous System http://www.cell.com/cell/abstract/S0092-8674(00)81107-1?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867400811071%3Fshowall%3Dtrue
  130. Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814935/
  131. Focal demyelination in Alzheimer’s disease and transgenic mouse models. http://www.ncbi.nlm.nih.gov/pubmed/20198482
  132. The absence of myelin basic protein promotes neuroinflammation and reduces amyloid β-protein accumulation in Tg-5xFAD mice. http://www.ncbi.nlm.nih.gov/pubmed/24188129
  133. The role of iron dysregulation in the pathogenesis of multiple sclerosis: an Egyptian study. https://www.ncbi.nlm.nih.gov/pubmed/18408021
  134. Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins. https://www.ncbi.nlm.nih.gov/m/pubmed/18280258/
  135. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. https://www.ncbi.nlm.nih.gov/pubmed/16372011
  136. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury. https://www.ncbi.nlm.nih.gov/pubmed/26699082
  137. Magnesium concentration in plasma and erythrocytes in MS. http://www.ncbi.nlm.nih.gov/pubmed/7572055?dopt=Abstract
  138. Comparative findings on serum IMg2+ of normal and diseased human subjects with the NOVA and KONE ISE’s for Mg2+. http://www.ncbi.nlm.nih.gov/pubmed/7939388?dopt=Abstract
  139. Magnesium concentration in brains from multiple sclerosis patients. http://www.ncbi.nlm.nih.gov/pubmed/2353567?dopt=Abstract
  140. Magnesium in depression. http://www.ncbi.nlm.nih.gov/pubmed/23950577
  141. Aminergic Studies and Cerebrospinal Fluid Cations in Suicide. http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1986.tb27901.x/abstract
  142. Electrolytes in blood in endogenous depression. http://www.ncbi.nlm.nih.gov/pubmed/5027529
  143. Calcium and magnesium concentrations in affective disorder: difference between plasma and serum in relation to symptoms. http://www.ncbi.nlm.nih.gov/pubmed/2618774
  144. Plasma and erythrocyte electrolytes in affective disorders. http://www.ncbi.nlm.nih.gov/pubmed/6222090
  145. Evolution of blood magnesium, sodium and potassium in depressed patients followed for three months. http://www.ncbi.nlm.nih.gov/pubmed/1299790
  146. Magnesium and depression: a systematic review.  http://www.tandfonline.com/doi/abs/10.1179/1476830512Y.0000000044?mobileUi=0&journalCode=ynns20
  147. Magnesium Intake and Depression in Adults. http://www.jabfm.org/content/28/2/249.full
  148. Rapid recovery from major depression using magnesium treatment. http://www.ncbi.nlm.nih.gov/pubmed/16542786
  149. Role of magnesium in the pathogenesis and treatment of migraine. http://www.ncbi.nlm.nih.gov/pubmed/19271946
  150. Deficiency in serum ionized magnesium but not total magnesium in patients with migraines. Possible role of ICa2+/IMg2+ ratio. http://www.ncbi.nlm.nih.gov/pubmed/8486510
  151. Role of magnesium in the pathogenesis and treatment of migraines. http://www.ncbi.nlm.nih.gov/pubmed/9523054
  152. Intravenous magnesium sulphate relieves migraine attacks in patients with low serum ionized magnesium levels: a pilot study. http://www.ncbi.nlm.nih.gov/pubmed/8549082
  153. Efficacy of intravenous magnesium sulfate in the treatment of acute migraine attacks. http://www.ncbi.nlm.nih.gov/pubmed/11251702
  154. Why all migraine patients should be treated with magnesium. http://www.ncbi.nlm.nih.gov/pubmed/22426836
  155. Latent tetany and anxiety, marginal magnesium deficit, and normocalcemia. http://www.ncbi.nlm.nih.gov/pubmed/1164868
  156. Type A behavior and magnesium metabolism. http://www.ncbi.nlm.nih.gov/pubmed/3523058
  157. Plasma magnesium levels in a population of psychiatric patients: correlations with symptoms.http://www.ncbi.nlm.nih.gov/pubmed/7800167
  158. Magnesium deficiency alters aggressive behavior and catecholamine function. http://www.ncbi.nlm.nih.gov/pubmed/3365326
  159. Stimulant-like effects of magnesium on aggression in mice. http://www.ncbi.nlm.nih.gov/pubmed/2880351
  160. The Shipley Project: Treating Food Allergy to Prevent Criminal Behaviour in Community Settings.http://www.tandfonline.com/doi/abs/10.1080/13590849862311
  161. Magnesium in Prevention and Therapy Section: ADHD http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586582/
  162. The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactivity disorder (ADHD). Positive response to magnesium oral loading test. http://www.ncbi.nlm.nih.gov/pubmed/9368236/
  163. Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. http://www.ncbi.nlm.nih.gov/pubmed/15466962/
  164. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. I. Attention deficit hyperactivity disorders. http://www.ncbi.nlm.nih.gov/pubmed/16846100/
  165. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. II. Pervasive developmental disorder-autism. http://www.ncbi.nlm.nih.gov/pubmed/16846101/
  166. [Effect of MAGNE-B6 on the clinical and biochemical manifestations of the syndrome of attention deficit and hyperactivity in children]. http://www.ncbi.nlm.nih.gov/pubmed/16579066/