Magnesium & Digestion

This page looks at how our digestive organs and all three phases of digestion require magnesium, and why magnesium deficiency can lead to digestive disorders. Sections include:

  1. Energy, protection, and repair of digestive organs needs magnesium.
  2. First phase of digestion: salivary glands.
  3. Second phase of digestion: stomach & protein break down.
  4. Third phase of digestion: pancreatic & intestinal function.
  5. Digestive issues like SIBO, heartburn, GERD & cancer.
  6. Solutions to restore magnesium levels and improve digestion.
Learn More

Magnesium & Digestion

This page looks at how our digestive organs and all three phases of digestion require magnesium, and why magnesium deficiency can lead to digestive disorders. Sections include:

  1. Energy, protection, and repair of digestive organs needs magnesium.
  2. First phase of digestion: salivary glands.
  3. Second phase of digestion: stomach & protein break down.
  4. Third phase of digestion: pancreatic & intestinal function.
  5. Digestive issues like SIBO, heartburn, GERD & cancer.
  6. Solutions to restore magnesium levels and improve digestion.
Let's Dive In!

1. Energy, protection, and repair of digestive organs needs magnesium:

2. First phase of digestion: salivary glands:

3. Second phase of digestion: stomach & protein break down:

4. Third phase of digestion: pancreatic & intestinal function:

5. Digestive issues like SIBO, heartburn, GERD & cancer:

6. Solutions to restore magnesium levels and improve digestion:

++ Scientific References

  1. PubChem: Adenosine Triphosphate.  https://pubchem.ncbi.nlm.nih.gov/compound/Adenosine_triphosphate
  2. Biochemistry of magnesium.  http://www.uwm.edu.pl/jold/poj1532010/jurnal-16.pdf
  3. Magnesium regulation of the glycolytic pathway and the enzymes involved.  http://www.ncbi.nlm.nih.gov/pubmed/2931560
  4. THE EFFECT OF MAGNESIUM DEFICIENCY ON OXIDATIVE PHOSPHORYLATION  http://www.jbc.org/content/228/2/573.full.pdf
  5. Section: “ELEMENTS OF MAGNESIUM BIOLOGY” Subsection: 1.13 Synthesis and activity of enzymes. http://www.mgwater.com/durex01.shtml
  6. Role of magnesium in genomic stability.  http://www.ncbi.nlm.nih.gov/pubmed/11295157
  7. Magnesium basics. http://ckj.oxfordjournals.org/content/5/Suppl_1/i3.full
  8. Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884513/
  9. Magnesium sulfate increases intracellular magnesium reducing inflammatory cytokine release in neonates. https://www.ncbi.nlm.nih.gov/pubmed/23590581
  10. Magnesium Intake in Relation to Systemic Inflammation, Insulin Resistance, and the Incidence of Diabetes. http://care.diabetesjournals.org/content/33/12/2604.abstractijkey=f923c1120dc6636d93fa39d29c797bee45949288&keytype2=tf_ipsecsha
  11. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: meta-analysis and systematic review:  http://www.ncbi.nlm.nih.gov/pubmed/24518747
  12. Effects of oral magnesium supplementation on inflammatory markers in middle-aged overweight women. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685774/
  13. The Magnesium Factor – melatonin biosynthesis – oxidative stress, pg 172. https://books.google.ca/books?id=BuW6xwqlQfkC&pg=PA172&lpg=PA172&dq=melatonin+biosynthesis+magnesium&source=bl&ots=vaxoOEyveq&sig=hwjGTCJch53S_NIo6Te8zvJHRww&hl=en&sa=X&ved=0ahUKEwiXwJGExKvOAhVE9x4KHToeAe0Q6AEIQjAF#v=onepage&q=melatonin%20biosynthesis%20magnesium&f=false
  14. Dietary factors and fluctuating levels of melatonin. http://www.foodandnutritionresearch.net/index.php/fnr/article/view/17252/23292
  15. Dietary magnesium deficiency decreases plasma melatonin in rats. http://www.ncbi.nlm.nih.gov/pubmed/17172005
  16. Glutathione Biosynthesis. https://en.wikipedia.org/wiki/Glutathione
  17. Glutathione Synthesis in Human Erythrocytes. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC442063/
  18. Effects of Glutathione on Red Blood Cell Intracellular Magnesium. http://hyper.ahajournals.org/content/34/1/76.full
  19. Intestinal inflammation caused by magnesium deficiency alters basal and oxidative stress-induced intestinal function.  https://www.ncbi.nlm.nih.gov/pubmed/17657590
  20. The role of magnesium deficiency in cardiovascular and intestinal inflammation.  https://www.ncbi.nlm.nih.gov/pubmed/20971697
  21. Magnesium and inflammatory bowel disease.  https://www.ncbi.nlm.nih.gov/pubmed/3294519
  22. The Role of Ceruloplasmin in Iron Metabolism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC322742/pdf/jcinvest00228-0276.pdf
  23. Multi-Copper Oxidases and Human Iron Metabolism. http://www.mdpi.com/2072-6643/5/7/2289/htm
  24. Biological effects of mutant ceruloplasmin on hepcidin-mediated internalization of ferroportin. http://www.sciencedirect.com/science/article/pii/S0925443910001481
  25. Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex. Evidence for a role of Mg2+ and ATP. https://www.ncbi.nlm.nih.gov/pubmed/8567646
  26. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. http://femsre.oxfordjournals.org/content/38/6/1202
  27. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants.  http://gut.bmj.com/content/early/2014/08/20/gutjnl-2014-307720.short
  28. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Côte d’Ivoire.  http://ajcn.nutrition.org/content/92/6/1406.short
  29. The relationship between magnesium and calciotropic hormones. http://www.ncbi.nlm.nih.gov/pubmed/7669510
  30. Calcium regulation. http://www.ncbi.nlm.nih.gov/pubmed/7037224
  31. Metastatic Calcification of Multiple Visceral Organs in Non-Hodgkin’s Lymphoma. http://jnm.snmjournals.org/content/36/5/820.full.pdf
  32. Organ calcification in renal hyperparathyroidism. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1296968/
  33. Multiple organ failure associated with extensive metastatic calcification in a patient with an intermediate state of human T lymphotropic virus type I (HTLV-I) infection: report of an autopsy case.  https://www.ncbi.nlm.nih.gov/pubmed/9648162
  34. CT of Schistosomal Calcification of the Intestine. http://www.ajronline.org/doi/pdf/10.2214/ajr.144.1.75
  35. Calcifying Bowel Inflammation: A Case Report. https://www.hindawi.com/journals/grp/2010/526486/
  36. Extensive peritoneal calcification and small intestinal perforation in a peritoneal dialysis patient: A case report.  http://www.sciencedirect.com/science/article/pii/S1607551X11000210
  37. Idiopathic colonic calcification: a case report. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687241/
  38. A Case of Isolated Small Intestinal Wall Calcification on Patient with Continuous Ambulatory Peritoneal Dialysis. http://synapse.koreamed.org/DOIx.php?id=10.4166/kjg.2013.62.1.55&vmode=PUBREADER
  39. An unusual cause of intra-abdominal calcification: A lithopedion. http://www.sciencedirect.com/science/article/pii/S2352047714000082
  40. Cephalic reflexes: their role in digestion and possible roles in absorption and metabolism. https://www.ncbi.nlm.nih.gov/pubmed/3302135
  41. Studies on the role of cephalic-vagal stimulation in the acid secretory response to eating in normal human subjects. https://www.ncbi.nlm.nih.gov/pubmed/874101
  42. Saliva Composition and Functions: A Comprehensive Review. https://www.unc.edu/courses/2008ss2/obio/720/001/2008_Readings/070308_saliva_review.pdf
  43. Saliva: its role in health and disease. https://www.ncbi.nlm.nih.gov/pubmed/3053879/
  44. INFLUENCE OF MAGNESIUM ON SALIVARY GLAND SECRETION: PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL STUDIES. https://core.ac.uk/download/pdf/18581530.pdf
  45. [The magnesium ion content in the secretion of human salivary glands].  https://www.ncbi.nlm.nih.gov/pubmed/5227000
  46. High Endogenous Salivary Amylase Activity Is Associated with Improved Glycemic Homeostasis following Starch Ingestion in Adults. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327743/
  47. Effects of diabetes mellitus on salivary secretion and its composition in the human. http://link.springer.com/article/10.1023/B:MCBI.0000028748.40917.6f
  48. Magnesium: Nature’s physiologic calcium blocker. http://www.ahjonline.com/article/0002-8703(84)90572-6/references
  49. Sialolithiasis. https://www.ncbi.nlm.nih.gov/pubmed/3318353
  50. Sialolithiasis: mechanism of calculi formation and etiologic factors. https://www.ncbi.nlm.nih.gov/pubmed/12867283
  51. Salivary gland diseases: infections, sialolithiasis and mucoceles. https://www.ncbi.nlm.nih.gov/pubmed/24862601
  52. Diagnosis and treatment of sialolithiasis. https://www.ncbi.nlm.nih.gov/pubmed/15696881
  53. Current opinions in sialolithiasis diagnosis and treatment. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639864/
  54. Increased calcium and decreased magnesium and citrate concentrations of submandibular/sublingual saliva in sialolithiasis. https://www.ncbi.nlm.nih.gov/pubmed/19962126
  55. Micromorphology of sialoliths in submandibular salivary gland: a scanning electron microscope and X-ray diffraction analysis.  https://www.ncbi.nlm.nih.gov/pubmed/15452813
  56. Physiology and pharmacology of the parietal cell. https://www.ncbi.nlm.nih.gov/pubmed/3048449
  57. Cell biology of acid secretion by the parietal cell. https://www.ncbi.nlm.nih.gov/pubmed/12500969
  58. The gastric HK-ATPase: structure, function, and inhibition. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079481/
  59. Acid secretion and the H,K ATPase of stomach. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2589780/
  60. Magnesium and the pancreas. http://ajcn.nutrition.org/content/26/3/362.abstract
  61. Effect of magnesium supplementation and depletion on the onset and course of acute experimental pancreatitis. http://gut.bmj.com/content/early/2013/11/25/gutjnl-2012-304274.abstract
  62. Magnesium intake and incidence of pancreatic cancer: the VITamins and Lifestyle study.  https://www.ncbi.nlm.nih.gov/pubmed/26554653
  63. Innate immunity in the small intestine.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502877/
  64. The intestinal stem cell. http://genesdev.cshlp.org/content/22/14/1856
  65. Renewal of cell populations. https://www.ncbi.nlm.nih.gov/pubmed/13322651?dopt=Abstract&holding=npg
  66. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration.  http://www.nature.com/nrm/journal/v15/n1/full/nrm3721.html
  67. Small Intestinal Bacterial Overgrowth.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099351/
  68. Epidemiology of gastro-oesophageal reflux disease: a systematic review.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774487/?tool=pubmed
  69. Severe hypomagnesemia in long-term users of proton-pump inhibitors. https://www.ncbi.nlm.nih.gov/pubmed/18221401
  70. Hypomagnesemia due to use of proton-pump inhibitors–a review.  https://www.ncbi.nlm.nih.gov/pubmed/19581665
  71. [An unknown but potentially serious side effect of proton pump inhibitors: hypomagnesemia].  https://www.ncbi.nlm.nih.gov/pubmed/19930736
  72. Fundic atrophic gastritis in an elderly population. Effect on hemoglobin and several nutritional indicators.  https://www.ncbi.nlm.nih.gov/pubmed/3771980
  73. Aging, the gastrointestinal tract, and risk of acid-related disease. https://www.ncbi.nlm.nih.gov/pubmed/15478847
  74. Why stomach acid is good for you: Natural relief from heartburn, indigestion, reflux and GERD.  https://www.amazon.com/Why-Stomach-Acid-Good-You/dp/0871319314/ref=sr_1_1?ie=UTF8&s=books&qid=1269752363&sr=8-1
  75. Pathophysiology of gastroesophageal reflux disease. http://www.nature.com/gimo/contents/pt1/full/gimo21.html
  76. Increased Intra-abdominal Pressure and GERD/Barett’s Esophagus. http://www.gastrojournal.org/article/s0016-5085(07)01843-4/abstract
  77. Effect of erythromycin on postprandial gastroesophageal reflux in reflux esophagitis. https://www.ncbi.nlm.nih.gov/pubmed/9079271
  78. Erythromycin strengthens the defective lower esophageal sphincter in patients with gastroesophageal reflux disease. https://www.ncbi.nlm.nih.gov/pubmed/8311129
  79. Oxidative damage in the central nervous system: protection by melatonin. http://www.sciencedirect.com/science/article/pii/S0301008298000525
  80. Antiinflammatory Activity of Melatonin in Central Nervous System http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001216/
  81. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. http://www.ncbi.nlm.nih.gov/pubmed/15975667
  82. Melatonin and its relation to the immune system and inflammation. http://www.ncbi.nlm.nih.gov/pubmed/11268363
  83. The Therapeutic Potential of Melatonin: A review of the science. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1395802/
  84. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions.  https://www.ncbi.nlm.nih.gov/pubmed/12870767
  85. Heartburn Cured: The Low Carb Miracle. https://www.amazon.com/Heartburn-Cured-The-Carb-Miracle/dp/0976642506/ref=sr_1_1?ie=UTF8&qid=1352653327&sr=8-1&keywords=heartburn+cured
  86. Helicobacter pylori infection and chronic gastric acid hyposecretion. https://www.ncbi.nlm.nih.gov/pubmed/9207257
  87. Peptic Ulcers; U.S. Department of Health and Human Services. https://www.niddk.nih.gov/health-information/health-topics/digestive-diseases/peptic-ulcer/Pages/overview.aspx
  88. Peptic Ulcer Disease and H. pylori. http://www.ibdclinic.ca/media/uploads/h_pylori_and_peptic_ulcers.pdf
  89. Abdominal pain: Helicobacter Pylori and Gastritis. http://www.starpoli.com/helio
  90. H. pylori infection and visceral hypersensitivity in patients with irritable bowel syndrome.  https://www.ncbi.nlm.nih.gov/pubmed/11549828