Bones, Joints & Magnesium

This guide looks at magnesium’s roles in bone & joint health and why magnesium deficiency can lead to osteoporosis and other issues. We look at:

  1. Magnesium prevents stiff and brittle bones.
  2. Bone formation and repair requires magnesium.
  3. Magnesium regulates bone formation.
  4. Magnesium regulates calcium absorption.
  5. Magnesium deficiency leads to brittle bones and calcification.
  6. Solutions restore healthy magnesium levels to strengthen our bones.
Learn More

Bones, Joints & Magnesium

This guide looks at magnesium’s roles in bone & joint health and why magnesium deficiency can lead to osteoporosis and other issues. We look at:

  1. Magnesium prevents stiff and brittle bones.
  2. Bone formation and repair requires magnesium.
  3. Magnesium regulates bone formation.
  4. Magnesium regulates calcium absorption.
  5. Magnesium deficiency leads to brittle bones and calcification.
  6. Solutions restore healthy magnesium levels to strengthen our bones.
Let's Dive In!

1. Magnesium prevents stiff and brittle bones:

2. Bone formation and repair requires magnesium:

3. Magnesium regulates bone formation:

4. a) Magnesium regulates calcium absorption:

4. b) Magnesium regulates calcium absorption:

5. Magnesium deficiency leads to brittle bones and calcification.:

6. Solutions restore magnesium levels and strengthen bones:

++ Scientific References

Video References:

v1.
All visuals/digital animation/footage have been taken from Amgen Science. We thank them for their phenomenal work! You can visit their website at https://www.amgenscience.com/.

Studies:

  1. Determinants of Bone Health. http://www.ncbi.nlm.nih.gov/books/NBK45503/
  2. The human “magnesome”: detecting magnesium binding sites on human proteins. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439678/
  3. Magnesium Supplementation and Bone Turnover. http://www.ncbi.nlm.nih.gov/pubmed/10453178
  4. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts.  http://www.ncbi.nlm.nih.gov/pubmed/9827688
  5. Daily oral magnesium supplementation suppresses bone turnover in young adult males. http://www.ncbi.nlm.nih.gov/pubmed/9709941
  6. [The interplay of magnesium and vitamin K2 on bone mineralization].  http://www.ncbi.nlm.nih.gov/pubmed/15995297
  7. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions.  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775240/
  8. Skeletal and hormonal effects of magnesium deficiency. http://www.ncbi.nlm.nih.gov/pubmed/19828898
  9. Effect of short-term hypomagnesemia on the chemical and mechanical properties of rat bone.  http://www.ncbi.nlm.nih.gov/pubmed/1403290
  10. The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. http://www.ncbi.nlm.nih.gov/pubmed/10655958
  11. The role of magnesium in osteoporosis and idiopathic hypercalcaemia. https://www.cabdirect.org/cabdirect/abstract/19611400775
  12. The cell biology of osteoclast function. http://www.ncbi.nlm.nih.gov/pubmed/10639325
  13. Major progress in understanding osteoclast function. http://www.mayoclinic.org/medical-professionals/clinical-updates/endocrinology/research-explores-mechanisms-regulate-bone-resorption-formation
  14. Osteoclast Migration, Differentiation and Function. http://www.medscape.com/viewarticle/781508_4
  15. Perspectives on Osteoblast and Osteoclast Function. http://ps.oxfordjournals.org/content/79/7/1005.full.pdf
  16. Osteoblasts and bone formation. http://www.ncbi.nlm.nih.gov/pubmed/17572649
  17. Control of osteoblast function and regulation of bone mass. http://www.ncbi.nlm.nih.gov/pubmed/12748654
  18. Osteoblast Differentiation and Mineralization.  http://www.promocell.com/fileadmin/knowledgebase/pdf-xls/Osteoblast_Differentiation_and_Mineralization.pdf
  19. Buried alive: how osteoblasts become osteocytes. http://www.ncbi.nlm.nih.gov/pubmed/16258960
  20. Function of osteocytes in bone. http://www.ncbi.nlm.nih.gov/pubmed/7962159
  21. [Recent progress in studies on osteocytes–osteocytes and mechanical stress]. http://www.ncbi.nlm.nih.gov/pubmed/11155692
  22. Osteocyte and bone structure. http://www.ncbi.nlm.nih.gov/pubmed/16036059
  23. Osteocytes, Mechanosensing and Wnt Signaling. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2349095/
  24. Osteocyte signaling in bone. http://www.ncbi.nlm.nih.gov/pubmed/22552701
  25. The bone microenvironment in metastasis; what is special about bone? http://www.ncbi.nlm.nih.gov/pubmed/18071636/
  26. Adenosine triphosphate. https://en.wikipedia.org/wiki/Adenosine_triphosphate
  27. Adenosine and Bone Metabolism. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669669/
  28. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells. http://onlinelibrary.wiley.com/doi/10.1111/dgd.12288/abstract
  29. ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: a novel role for the P2Y2 receptor in bone remodeling. http://www.ncbi.nlm.nih.gov/pubmed/12210747
  30. Pubchem: MgATP https://pubchem.ncbi.nlm.nih.gov/compound/15126#section=Top
  31. Biochemistry of magnesium http://www.uwm.edu.pl/jold/poj1532010/jurnal-16.pdf
  32. Magnesium in biology (Mg-ATP) https://en.wikipedia.org/wiki/Magnesium_in_biology
  33. Magnesium basics. http://ckj.oxfordjournals.org/content/5/Suppl_1/i3.full
  34. MAGNESIUM IN MAN: IMPLICATIONS FOR HEALTH AND DISEASE pg 2 paragraph 2.   http://www.physiomics.eu/media/181616/de_baaij_magnesium_in_man.full.pdf
  35. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: double-blind, randomized clinical trial.(While magnesium’s role in the beta cell’s actual release of insulin is less established than its role in the beta cells creating insulin, this study makes ground on the overall impact of magnesium on beta cells).  http://www.ncbi.nlm.nih.gov/pubmed/21241290
  36. Separate effects of Mg2+, MgATP, and ATP4- on the kinetic mechanism for insulin receptor tyrosine kinase. http://www.ncbi.nlm.nih.gov/pubmed/2157363
  37. Role of divalent metals in the activation and regulation of insulin receptor tyrosine kinase. http://www.ncbi.nlm.nih.gov/pubmed/2847822
  38. Substitution Studies of the Second Divalent Metal Cation Requirement of Protein Tyrosine Kinase CSK. http://pubs.acs.org/doi/abs/10.1021/bi982793w
  39. Intracellular magnesium and insulin resistance. (Insulin’s function is magnesium dependent):  http://www.ncbi.nlm.nih.gov/pubmed/15319146
  40. Magnesium in Human Health and Disease. (Insulin’s function is magnesium dependent): http://www.springer.com/gp/book/9781627030434  or  see this excerpt:    https://books.google.ca/books?id=iUCx1dwWr7kC&pg=PA132&lpg=PA132&dq=tyrosine+kinase+Mg&source=bl&ots=y2ITN0DdKo&sig=d9F3WRCchZ2_2wQhvW9fe2faqtk&hl=en&sa=X&ved=0ahUKEwj7jJ3fxdTMAhVM1oMKHQDFAKkQ6AEIYzAJ#v=onepage&q=tyrosine%20kinase%20Mg&f=false
  41. Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial.  http://www.ncbi.nlm.nih.gov/pubmed/15223977
  42. Fatty acid transport across the cell membrane: regulation by fatty acid transporters. http://www.ncbi.nlm.nih.gov/pubmed/20206486
  43. Magnesium regulation of the glycolytic pathway and the enzymes involved.  http://www.ncbi.nlm.nih.gov/pubmed/2931560
  44. Fat burning: Beta Oxidation  https://en.wikipedia.org/wiki/Beta_oxidation
  45. Section: “ELEMENTS OF MAGNESIUM BIOLOGY” Subsection: 1.13 Synthesis and activity of enzymes http://www.mgwater.com/durex01.shtml
  46. ATP production: Oxidative phosphorylation. https://en.wikipedia.org/wiki/Oxidative_phosphorylation
  47. THE EFFECT OF MAGNESIUM DEFICIENCY ON OXIDATIVE PHOSPHORYLATION. http://www.jbc.org/content/228/2/573.full.pdf
  48. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate.  http://www.ncbi.nlm.nih.gov/pubmed/10506126
  49. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles. https://www.ncbi.nlm.nih.gov/pubmed/2145974
  50. The linkage between magnesium binding and RNA folding.  http://www.ncbi.nlm.nih.gov/pubmed/11955006
  51. Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding.  http://www.ncbi.nlm.nih.gov/pubmed/21173199
  52. A thermodynamic framework for the magnesium-dependent folding of RNA. http://www.ncbi.nlm.nih.gov/pubmed/12717727
  53. RNA-magnesium-protein interactions in large ribosomal subunit.  http://www.ncbi.nlm.nih.gov/pubmed/22712611
  54. A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center.  http://www.ncbi.nlm.nih.gov/pubmed/19279186
  55. ATP and adenosine act as a mitogen for osteoblast-like cells (MC3T3-E1). http://www.ncbi.nlm.nih.gov/pubmed/8998680/
  56. Nitric oxide mediates low magnesium inhibition of osteoblast-like cell proliferation. http://www.ncbi.nlm.nih.gov/pubmed/22209000
  57. Critical role of magnesium ions in DNA polymerase beta’s closing and active site assembly.  http://www.ncbi.nlm.nih.gov/pubmed/15238001
  58. Structural and catalytic chemistry of magnesium-dependent enzymes. http://www.ncbi.nlm.nih.gov/pubmed/12206389
  59. ATP activates DNA synthesis by acting on P2X receptors in human osteoblast-like MG-63 cells. http://www.ncbi.nlm.nih.gov/pubmed/10913018
  60. Magnesium directly stimulates osteoblast proliferation. https://www.scienceopen.com/document?10&vid=bd91dfa3-092b-44f9-a6cd-980c5db2f795
  61. Immunolocalization of RANKL is Increased and OPG Decreased During Dietary Magnesium Deficiency in the Rat. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1266035/
  62. Effect of magnesium ion on human osteoblast activity. http://www.ncbi.nlm.nih.gov/pubmed/27383121
  63. Magnesium Intake from Food and Supplements Is Associated with Bone Mineral Density in Healthy Older White Subjects.  http://www.mgwater.com/Ryder.pdf
  64. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women.  http://ajcn.nutrition.org/content/69/4/727.full.pdf
  65. The relationship between magnesium and calciotropic hormones. http://www.ncbi.nlm.nih.gov/pubmed/7669510
  66. Calcium regulation. http://www.ncbi.nlm.nih.gov/pubmed/7037224
  67. [Hormones in bone metabolism. I. Calcitropic hormones]. http://www.ncbi.nlm.nih.gov/pubmed/2272073
  68. [Parathyroid hormone and calcitonin]. http://www.ncbi.nlm.nih.gov/pubmed/1337117
  69. [Hormonal regulation of bone metabolism]. http://www.ncbi.nlm.nih.gov/pubmed/8243730
  70. Effect of calcitonin on bone cell ultrastructure. http://www.sciencedirect.com/science/article/pii/016960099290896L
  71. Effects of calcitonin on bone quality and osteoblastic function. http://link.springer.com/article/10.1007/BF00310194
  72. Calcitonin, the forgotten hormone: does it deserve to be forgotten? http://ckj.oxfordjournals.org/content/8/2/180.full
  73. [Effects of calcitonin on osteoblast cell proliferation and OPG/RANKL expression: experiment with mouse osteoblasts].  http://www.ncbi.nlm.nih.gov/pubmed/17785093
  74. Magnesium Deficiency in the Pathogenesis of Disease. Early Roots of Cardiovascular, Skeletal, and Renal Abnormalities. http://annals.org/article.aspx?articleid=694784
  75. THE CALCIUM CONTROVERSY.  http://www.mgwater.com/gacontro.shtml
  76. Magnesium: A Key to Calcium Absorption. http://www.mgwater.com/calmagab.shtml
  77. Induction of osteoclast formation by parathyroid hormone depends on an action on stromal cells. http://joe.endocrinology-journals.org/content/158/3/341.full.pdf
  78. Effects of parathyroid hormone on osteoclasts in vivo. http://link.springer.com/article/10.1007/BF00307123
  79. Parathyroid hormone temporal effects on bone formation and resorption. http://www.ncbi.nlm.nih.gov/pubmed/10824426
  80. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. http://www.ncbi.nlm.nih.gov/pubmed/21985975
  81. Magnesium and the parathyroid. http://www.ncbi.nlm.nih.gov/pubmed/12105390
  82. Parathyroid hormone secretion in magnesium deficiency. http://www.ncbi.nlm.nih.gov/pubmed/263326
  83. Effect of magnesium on phosphorus and calcium metabolism.  http://www.ncbi.nlm.nih.gov/pubmed/1331782
  84. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910342/
  85. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257661/
  86. Vitamin D: The “sunshine” vitamin. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356951/
  87. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. http://www.sciencedirect.com/science/article/pii/S1074552114000246
  88. Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form (review). http://www.ncbi.nlm.nih.gov/pubmed/11172626
  89. Overview of regulatory cytochrome P450 enzymes of the vitamin D pathway.  http://www.ncbi.nlm.nih.gov/pubmed/11179747
  90. Cytochromes P450 are essential players in the vitamin D signaling system. http://www.ncbi.nlm.nih.gov/pubmed/20619365
  91. Cytochrome P450-mediated metabolism of vitamin D. http://www.ncbi.nlm.nih.gov/pubmed/23564710
  92. Consider Magnesium Homeostasis: III: Cytochrome P450 Enzymes and Drug Toxicity. http://online.liebertpub.com/doi/abs/10.1089/pai.1994.8.7
  93. Effect of 1,25-dihydroxyvitamin D3 on calcium and magnesium absorption in the healthy human jejunum and ileum. http://www.ncbi.nlm.nih.gov/pubmed/6689108
  94. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. http://www.ncbi.nlm.nih.gov/pubmed/21182397
  95. Molecular aspects of intestinal calcium absorption. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476875/
  96. [Calciotropic actions of parathyroid hormone and vitamin D-endocrine system].  http://www.ncbi.nlm.nih.gov/pubmed/18019603
  97. Low serum concentrations of 1,25-dihydroxyvitamin D in human magnesium deficiency. https://www.ncbi.nlm.nih.gov/pubmed/3840173
  98. Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-187
  99. Magnesium deficit – overlooked cause of low vitamin D status? bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-229
  100. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. https://www.ncbi.nlm.nih.gov/pubmed/21505219
  101. Should we prescribe calcium or vitamin D supplements to treat or prevent osteoporosis? https://www.ncbi.nlm.nih.gov/pubmed/26473773
  102. Elevated brain lesion volumes in older adults who use calcium supplements: a cross-sectional clinical observational study. https://www.ncbi.nlm.nih.gov/pubmed/24787048
  103. Magnesium: Nature’s physiologic calcium blocker. http://www.ahjonline.com/article/0002-8703(84)90572-6/references
  104. Prevention of osteoporosis: the calcium controversy. https://www.ncbi.nlm.nih.gov/pubmed/2631941
  105. Cardiovascular effects of calcium supplementation. https://www.ncbi.nlm.nih.gov/pubmed/21409434
  106. Calcium supplements and cardiovascular risk: 5 years on. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125316/
  107. Cardiovascular Effects of Calcium Supplements. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738985/
  108. Cardiovascular disease and osteoporosis: Balancing risk management. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291312/
  109. The link between osteoporosis and cardiovascular disease. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781192/
  110. Ischemic heart disease is associated with lower cortical volumetric bone mineral density of distal radius. link.springer.com/article/10.1007/s00198-015-3132-z